Una vez dentro de Mynu lo normal es tener una mirada más enfocada en tu salud y tu bienestar. Es de lo más natural que busquemos entender mejor nuestra predisposición genética a ciertas condiciones de salud. En este caso entender mejor nuestra salud intestinal.

En este blog, exploraremos la predisposición alta a la salud intestinal y cómo esta información genética puede influir en nuestro bienestar. Es importante recordar que lo que mostramos es una predisposición, no un diagnóstico definitivo, pero sin embargo, es una oportunidad para motivarse y prestar mayor atención a nuestra salud intestinal.

¿Mi Genética de Verdad Muestra lo que Tengo?

Cuando se trata de la salud intestinal, nuestros genes pueden desempeñar un papel importante en nuestra predisposición a desarrollar ciertas condiciones. Nuestros expertos en genética han identificado una serie de genes asociados. Los genes IRF6, FAM171B, FOXP1, IMPG2, CCND3, CUL1, PLCG2 y FERMT1, pueden influir en nuestra salud intestinal y en la aparición de síntomas relacionados. Aunque puede haber más genes relacionados con esta condición, la presencia de estos genes alterados sugiere una predisposición genética a experimentar algún tipo de sintomatología si no se aborda adecuadamente.

¿Qué Hacen Estos Genes en Tu Cuerpo?

IRF6 (Interferon Regulatory Factor 6):

El gen IRF6 codifica un factor de transcripción que regula la expresión de genes implicados en el desarrollo y en la respuesta inmune. Variantes en este gen se han asociado con anomalías en el desarrollo. Pero también pueden influir en la respuesta inflamatoria en el intestino. La inflamación crónica puede contribuir a enfermedades inflamatorias intestinales como la enfermedad de Crohn y la colitis ulcerosa (1).

FAM171B:

El gen FAM171B ha sido identificado como un gen poliglutamina (polyQ) que contiene catorce residuos consecutivos de glutamina. Este gen se expresa en el cerebro y se localiza en estructuras vesiculares en el citoplasma de las neuronas. Aunque FAM171B se ha estudiado principalmente en el contexto de enfermedades neurodegenerativas, las proteínas con tramos de poliglutamina se ven implicadas en la disfunción celular y el estrés oxidativo, factores cruciales en la enfermedad inflamatoria intestinal (EII). Por lo tanto, FAM171B podría ser relevante para futuras investigaciones sobre la genética de la EII, sugiriendo una posible contribución a la patogénesis de esta enfermedad (2).

FOXP1:

En el estudio de la enfermedad inflamatoria intestinal (EII), se ha descubierto que el gen FOXP1 juega un papel importante. Este gen mostró una mayor actividad en pacientes con EII. En las que podemos ver la enfermedad de Crohn y la colitis ulcerosa, en comparación con las personas sanas. Esta mayor actividad de FOXP1 sugiere que podría estar implicado en los problemas del sistema inmunológico que se observan en la EII. Haciendo de este gen un posible objetivo para futuras terapias (3).

IMPG2:

El gen IMPG2 (proteína de la membrana interfotoreceptora 2) se identificado como uno de los nuevos loci de riesgo en la enfermedad inflamatoria intestinal (EII). Este gen juega un papel crucial en la estructura y función de la retina. Sin embargo su implicación en EII sugiere una posible conexión entre la función de la barrera epitelial y la inflamación crónica del intestino. La identificación de IMPG2 amplía nuestro entendimiento de cómo diferentes sistemas biológicos pueden influir en la susceptibilidad a EII, ofreciendo nuevas vías para la investigación y potenciales enfoques terapéuticos (4,5).

CCND3:

El gen CCND3, encargado de regular el ciclo celular, también se ha relacionado con la salud intestinal. Se descubrió que una variante de este gen está asociada con un mayor riesgo de desarrollar enfermedad injerto contra huésped (EICH) grave en el intestino, una condición con similitudes con enfermedades inflamatorias intestinales (EII) como la enfermedad de Crohn y la colitis ulcerosa. Aunque los resultados iniciales mostraron un riesgo significativamente mayor, esta relación genera dudas en análisis posteriores. Estos hallazgos resaltan la importancia de seguir investigando el papel de CCND3 en la salud intestinal y cómo puede influir en condiciones inflamatorias (6).

CUL1:

El gen CUL1 forma parte de una familia de genes que codifican para ligasas de ubiquitina. Específicamente las ligasas Cullin-RING, que regulan la estabilidad y actividad de muchas proteínas importantes. En particular, CUL1 juega un papel crucial en la regulación de la inflamación, un factor clave en las enfermedades inflamatorias intestinales (EII). Estudios recientes han mostrado que la alteración en la función de CUL1 puede influir en la activación de la vía de señalización NF-κB, que es fundamental en la respuesta inflamatoria del cuerpo. Además, investigaciones han indicado que la modulación de CUL1 puede afectar la inflamación del intestino y, por lo tanto, influir en la severidad de enfermedades como la colitis ulcerosa y la enfermedad de Crohn (7).

PLCG2:

El gen PLCG2 está relacionado con la enfermedad inflamatoria intestinal (EII), que incluye condiciones como la enfermedad de Crohn y la colitis ulcerosa. Investigaciones recientes han encontrado que ciertas variaciones en PLCG2 pueden aumentar el riesgo de desarrollar EII. Estas variaciones afectan la enzima fosfolipasa C gamma 2 (PLCγ2), que es importante en el sistema inmunitario. Cuando la enzima no funciona correctamente, puede llevar a una respuesta inflamatoria descontrolada en el intestino. Entender el papel de PLCG2 y la enzima PLCγ2 en la EII no solo ayuda a identificar a las personas en riesgo, sino que también puede abrir nuevas posibilidades para tratamientos que regulen esta enzima y mejoren la vida de quienes padecen estas enfermedades (6).

FERMT1:

El gen FERMT1, responsable del síndrome de Kindler, es fundamental en la integridad de la barrera intestinal y cutánea. Las mutaciones en este gen causan problemas graves en la piel, como ampollas y fotosensibilidad, así como síntomas gastrointestinales similares a la colitis ulcerosa, incluyendo diarrea hemorrágica. Este síndrome, aunque raro, muestra la importancia de la barrera intestinal en enfermedades inflamatorias. La identificación temprana de mutaciones en FERMT1 puede permitir tratamientos más específicos y efectivos, mejorando significativamente la calidad de vida de los pacientes afectados (8).

¿Qué pueden hacer Mynu y Numy por ti?

Cuando tenemos la información de nuestra predisposición genética alta a Salud intestinal, surge la pregunta: ¿Cómo podemos manejar esta situación de buena manera? Aquí es donde entra en el juego Mynu con todo lo que te ofrece. Destacando por sobre todo, Numy.

En nuestra plataforma, podemos utilizar tus datos genéticos para ofrecerte una dieta personalizada que se adapte a tus necesidades y objetivos específicos. Integrando tu predisposición genética única con tus preferencias y metas de salud, podemos diseñar un plan de alimentación verdaderamente personalizado que te ayude a mantener síntomas gastrointestinales bajo control y promover una mejor salud en general. Sin embargo cualquier duda sobre alimentación y estilo de vida puede ser resuelta por Numy. Ella siempre estará disponible para ayudarte en lo que necesites, no solo sobre la salud intestinal si no con todos los genes y dietas que te mostremos.

La Importancia de la Educación y el Autocuidado

Además de utilizar Mynu, es fundamental educarse sobre la salud intestinal y cómo afecta nuestra calidad de vida. Comprender los factores de riesgo es lo principal. Aparte debemos ver los síntomas y las estrategias de prevención para ayudarnos a tomar decisiones informadas sobre nuestra salud. Además, el autocuidado desempeña un papel fundamental para mantener una salud intestinal adecuada. Debemos incorporar una dieta equilibrada y la reducción del estrés.

Tu dieta realmente impacta en tu salud intestinal

Es importante considerar el impacto de nuestra dieta en la salud intestinal. La permeabilidad intestinal refiere la capacidad del intestino para controlar qué sustancias pueden pasar del intestino a tu sangre. Una dieta con muchos alimentos procesados, grasas saturadas, azúcares refinados y productos químicos puede aumentar la permeabilidad intestinal. Cuando la permeabilidad aumenta se conoce como “intestino permeable” o “síndrome del intestino permeable”. Esta condición puede permitir que toxinas, bacterias y partículas que no pudiste digerir bien entren en tu sangre. Provocando una respuesta inflamatoria y ayudando a que se produzca una sintomatología gastrointestinal. Por lo tanto, cuidar nuestra dieta y elegir alimentos frescos, integrales y nutritivos podría ser de lo más importante para mantener tu salud intestinal y minimizar los síntomas de la condición (9,10).

Factores de Riesgo Adicionales

Además de nuestra predisposición genética, existen otros factores de riesgo que pueden influir en nuestra salud intestinal. Principalmente podemos hablar de la dieta, el estrés, los medicamentos y el estilo de vida en general. Es importante identificar y abordar estos factores de riesgo para mantener una salud óptima y prevenir problemas en el futuro.

Conclusión: Comienza tu Viaje hacia una Mejor Salud Intestinal

Es normal que la predisposición genética pueda generar preocupación. Sin embargo representa una oportunidad para tomar medidas claras hacia una mejor salud intestinal. Con la información y las herramientas disponibles, como las que ofrecemos en Mynu. Usted puede tomar el control de su salud y encaminarse hacia un futuro más saludable. No se trata solo de la genética, sino de las elecciones que hacemos todos los días. ¡Únete a nosotros en este viaje hacia una mejor salud intestinal y bienestar general!

Bibliografía:

1.- Kondo, S., et al. (2002). Nature Genetics, 32(2), 285-289. https://doi.org/10.1038/ng985

2.- Tran, Q. et al. (2021). Brain Research, 1766, 147540. https://doi.org/10.1016/j.brainres.2021.147540

3.- Nowak, J. K.et al.  (2022). Journal Of Crohn’s And Colitis, 16(8), 1255-1268. https://doi.org/10.1093/ecco-jcc/jjac033

4.- Van Huet, R. A. C. et al. (2014). Investigative Ophthalmology & Visual Science, 55(6), 3939. https://doi.org/10.1167/iovs.14-14129

5.- De Lange, K. M. et al. (2017). Nature Genetics, 49(2), 256-261. https://doi.org/10.1038/ng.3760

6.- Martin, P. J. et al. (2021). Blood Advances, 5(21), 4456-4464. https://doi.org/10.1182/bloodadvances.2021004959

7.- Zhang, X.et al. (2023). Frontiers In Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125224

8.- Bianco, A. M. (2015). World Journal Of Gastroenterology, 21(43), 12296. https://doi.org/10.3748/wjg.v21.i43.12296

9.- Khoshbin, K.et al. American Journal Of Physiology. 319(5), G589-G608. https://doi.org/10.1152/ajpgi.00245.2020

10.- Suzuki, T. (2020). Animal Science Journal, 91(1). https://doi.org/10.1111/asj.13357